
Grammar in a Landscape of Affordances

Eleni Gregoromichelaki
University of Gothenburg

https://elenigregor.github.io/
http://dynamicsyntax.org/

02 December 2020

Gregoromichelaki, Eleni CLASP 02/12/20 1/60

1 DS-TTR

2 Zoom into trees and treenodes

3 DS-TTR+

4 Appendix

Gregoromichelaki, Eleni CLASP 02/12/20 2/60

Outline

1 DS-TTR

2 Zoom into trees and treenodes

3 DS-TTR+

4 Appendix

Gregoromichelaki, Eleni CLASP 02/12/20 3/60

what is the nature of grammar: the view from DS-TTR

DS-TTR: blend of DS and TTR [Purver et al. (2010); Eshghi et al. (2013);

Hough (2015); Purver et al. (2011); Gregoromichelaki (2018); Gregoromichelaki et al. (2019b)]

grammatical/metaphysical ontology of processes
rather than representations

Gregoromichelaki, Eleni CLASP 02/12/20 4/60

what is the nature of grammar: the view from DS-TTR

DS-TTR: blend of DS and TTR [Purver et al. (2010); Eshghi et al. (2013);

Hough (2015); Purver et al. (2011); Gregoromichelaki (2018); Gregoromichelaki et al. (2019b)]

grammatical/metaphysical ontology of processes
rather than representations

incrementality, underspecification, and predictivity
as properties of the grammar

domain-general processes for multimodal interaction
[e.g.,Yu et al. (2015, 2017); Yu et al., 2016)]

learnable from minimal data via Reinforcement Learning
[e.g.,Kalatzis et al. (2016); Eshghi et al. (2017b)]

Gregoromichelaki, Eleni CLASP 02/12/20 4/60

DS-TTR: syntactic mechanisms

Dynamic Syntax (DS) [Kempson et al. (2001); Gregoromichelaki et al. (2019b)]

Gregoromichelaki, Eleni CLASP 02/12/20 5/60

DS-TTR: syntactic mechanisms

Dynamic Syntax (DS) [Kempson et al. (2001); Gregoromichelaki et al. (2019b)]

(inter)actions are all you need to talk about “syntax”

Gregoromichelaki, Eleni CLASP 02/12/20 5/60

DS-TTR: syntactic mechanisms

Dynamic Syntax (DS) [Kempson et al. (2001); Gregoromichelaki et al. (2019b)]

(inter)actions are all you need to talk about “syntax”

syntactic structure over words (tree-structures) is at best
epiphenomenal

no separate syntactic level of representation:

no syntactic categories for strings of words;
no phrase-structure rules;
sequences of words are not sequences of symbols but
sequences of affordance triggers

Gregoromichelaki, Eleni CLASP 02/12/20 5/60

DS-TTR: syntactic mechanisms

Dynamic Syntax (DS) [Kempson et al. (2001); Gregoromichelaki et al. (2019b)]

(inter)actions are all you need to talk about “syntax”

syntactic structure over words (tree-structures) is at best
epiphenomenal

no separate syntactic level of representation:

no syntactic categories for strings of words;
no phrase-structure rules;
sequences of words are not sequences of symbols but
sequences of affordance triggers

grammatical affordances are dynamic regularities extending
over multiple time-steps

Gregoromichelaki, Eleni CLASP 02/12/20 5/60

extending DS-TTR: conceptualisation as interaction

TTR [see e.g. Cooper (2012); Cooper and Ginzburg (2015)]: linking grammar to
perception and high-order conceptualisation [cf.Bengio (2019)]

Gregoromichelaki, Eleni CLASP 02/12/20 6/60

extending DS-TTR: conceptualisation as interaction

TTR [see e.g. Cooper (2012); Cooper and Ginzburg (2015)]: linking grammar to
perception and high-order conceptualisation [cf.Bengio (2019)]

types (concepts) as (sets of) affordances

Gregoromichelaki, Eleni CLASP 02/12/20 6/60

extending DS-TTR: conceptualisation as interaction

TTR [see e.g. Cooper (2012); Cooper and Ginzburg (2015)]: linking grammar to
perception and high-order conceptualisation [cf.Bengio (2019)]

types (concepts) as (sets of) affordances
- affordances are the possibilities for interaction in the
sociomaterial environment to which agents are “attuned”
interaction with entities

agents can interact with aspects of entities without necessarily
recognising the entity
learning affordances (sensorimotor contingencies) replaces the
effort of building ontologies and writing rules

types (concepts) as time-extended processes
(incrementality, temporality)

Gregoromichelaki, Eleni CLASP 02/12/20 6/60

extending DS-TTR: conceptualisation as interaction

TTR [see e.g. Cooper (2012); Cooper and Ginzburg (2015)]: linking grammar to
perception and high-order conceptualisation [cf.Bengio (2019)]

types (concepts) as (sets of) affordances
- affordances are the possibilities for interaction in the
sociomaterial environment to which agents are “attuned”
interaction with entities

agents can interact with aspects of entities without necessarily
recognising the entity
learning affordances (sensorimotor contingencies) replaces the
effort of building ontologies and writing rules

types (concepts) as time-extended processes
(incrementality, temporality)

types induce predictions for
what is to be encountered as perceptual stimulation next or
predictions regarding how the agent can interact with some
entity/feature of the environment

Gregoromichelaki, Eleni CLASP 02/12/20 6/60

extending DS-TTR: conceptualisation as interaction

TTR [see e.g. Cooper (2012); Cooper and Ginzburg (2015)]: linking grammar to
perception and high-order conceptualisation [cf.Bengio (2019)]

types (concepts) as (sets of) affordances
- affordances are the possibilities for interaction in the
sociomaterial environment to which agents are “attuned”
interaction with entities

agents can interact with aspects of entities without necessarily
recognising the entity
learning affordances (sensorimotor contingencies) replaces the
effort of building ontologies and writing rules

types (concepts) as time-extended processes
(incrementality, temporality)

types induce predictions for
what is to be encountered as perceptual stimulation next or
predictions regarding how the agent can interact with some
entity/feature of the environment

at each time-step, affordances need to be selected from a
landscape of possible affordances

Gregoromichelaki, Eleni CLASP 02/12/20 6/60

common ground: joint affordances in dialogue

unit of analysis: a group-based
distributed cognitive system

Gregoromichelaki, Eleni CLASP 02/12/20 7/60

common ground: joint affordances in dialogue

unit of analysis: a group-based
distributed cognitive system
landscape of joint affordances
defines what is available [Skilled

Intentionality framework, Rietveld et al. (2018)]

Gregoromichelaki, Eleni CLASP 02/12/20 7/60

common ground: joint affordances in dialogue

unit of analysis: a group-based
distributed cognitive system
landscape of joint affordances
defines what is available [Skilled

Intentionality framework, Rietveld et al. (2018)]

in joint action, participants’
abilities, the sociomaterial
environment, and the previous
history of interactions codetermine
a particular subset of the field of
affordances (solicitations)

Gregoromichelaki, Eleni CLASP 02/12/20 7/60

common ground: joint affordances in dialogue

unit of analysis: a group-based
distributed cognitive system
landscape of joint affordances
defines what is available [Skilled

Intentionality framework, Rietveld et al. (2018)]

in joint action, participants’
abilities, the sociomaterial
environment, and the previous
history of interactions codetermine
a particular subset of the field of
affordances (solicitations)
so-called common ground
Stalnaker (1999); Clark (1996)] is a
property of the relation of
individual participants’ affordances

Gregoromichelaki, Eleni CLASP 02/12/20 7/60

common ground: joint affordances in dialogue

unit of analysis: a group-based
distributed cognitive system
landscape of joint affordances
defines what is available [Skilled

Intentionality framework, Rietveld et al. (2018)]

in joint action, participants’
abilities, the sociomaterial
environment, and the previous
history of interactions codetermine
a particular subset of the field of
affordances (solicitations)
so-called common ground
Stalnaker (1999); Clark (1996)] is a
property of the relation of
individual participants’ affordances

incrementality and temporality

means that such fields are

redefined and transformed with

each utterance (verbal or

otherwise)

Gregoromichelaki, Eleni CLASP 02/12/20 7/60

interaction first

actions (procedural ‘know-how’) the basis for
syntax/semantics/pragmatics

Gregoromichelaki, Eleni CLASP 02/12/20 8/60

interaction first

actions (procedural ‘know-how’) the basis for
syntax/semantics/pragmatics

interactions: both comprehension and production modelled
together in the same space

Gregoromichelaki, Eleni CLASP 02/12/20 8/60

interaction first

actions (procedural ‘know-how’) the basis for
syntax/semantics/pragmatics

interactions: both comprehension and production modelled
together in the same space

syntactic or meaning procedures formulated as (probabilistic)
transitions from states to states

Gregoromichelaki, Eleni CLASP 02/12/20 8/60

the dynamics of interaction

a specialised Propositional Dynamic Logic (PDL) with
states as 〈NL string, context〉 and transition operators
modelling basic actions and macros (packages) of such actions
[Kempson et al. (2001)]

Gregoromichelaki, Eleni CLASP 02/12/20 9/60

the dynamics of interaction

a specialised Propositional Dynamic Logic (PDL) with
states as 〈NL string, context〉 and transition operators
modelling basic actions and macros (packages) of such actions
[Kempson et al. (2001)]

Dynamic Logics

have the means to model any type of action and event
(physical, instrumental, epistemic, etc.) [e.g. Segerberg (1992)]: hence
multimodal grammar definitions are seamless
model an internal perspective in a computation, an observer’s
view located at a state (node) considering the possibilities
potential to bring Dynamic Quantum Logic [Baltag and Smets (2012)]

to interface with DS Vector Space Semantics
[Purver et al. (forthcoming); Sadrzadeh et al. (2018); Gregoromichelaki et al. (2019a)]

however, ideally, the π-calculus might be more suitable

Gregoromichelaki, Eleni CLASP 02/12/20 9/60

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

?(
s
c
a
n
A
,
B
(w

or
ld
))

?(
u
t
t
e
r
B
(B

o
ri
s
))

?(
m
a
k
e B

(g
es
tu
re
))

?(m
a
k
e
A
,B (handshake))

?(utterA(Boris))

Gregoromichelaki, Eleni CLASP 02/12/20 10/60

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

Alice to Bob: “Boris!”

abort

abort

abort

?(
s
c
a
n
A
,
B
(w

or
ld
))

?(
u
t
t
e
r
B
(B

o
ri
s
))

?(
m
a
k
e B

(g
es
tu
re
))

?(m
a
k
e
A
,B (handshake))

?(utterA(Boris))?(utterA(Boris))

?(
ma
ke
A
(s
mi
le
))

. .
.

. . .

. . .

Gregoromichelaki, Eleni CLASP 02/12/20 10/60

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

Alice to Bob: “Boris!”

abort

abort

abort

?(
s
c
a
n
A
,
B
(w

or
ld
))

?(
u
t
t
e
r
B
(B

o
ri
s
))

?(
m
a
k
e B

(g
es
tu
re
))

?(m
a
k
e
A
,B (handshake))

?(utterA(Boris))

?(
ma
ke
A
(s
mi
le
))

?(make-subjectA,B)

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

?(
m
a
k
e
-
a
d
j
u
n
c
t A

,
B
)

. .
.

. . .

. . .

Gregoromichelaki, Eleni CLASP 02/12/20 10/60

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

Alice to Bob: “Boris!”

abort

abort

abort

?(
s
c
a
n
A
,
B
(w

or
ld
))

?(
u
t
t
e
r
B
(B

o
ri
s
))

?(
m
a
k
e B

(g
es
tu
re
))

?(m
a
k
e
A
,B (handshake))

?(utterA(Boris))

?(
ma
ke
A
(s
mi
le
))

?(make-subjectA,B)

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

?(
m
a
k
e
-
a
d
j
u
n
c
t A

,
B
)

?(make-subjectA,B)

. .
.

. . .

. . .

Gregoromichelaki, Eleni CLASP 02/12/20 10/60

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

Alice to Bob: “Boris!”

abort

abort

abort

?(
s
c
a
n
A
,
B
(w

or
ld
))

?(
u
t
t
e
r
B
(B

o
ri
s
))

?(
m
a
k
e B

(g
es
tu
re
))

?(m
a
k
e
A
,B (handshake))

?(utterA(Boris))

?(
ma
ke
A
(s
mi
le
))

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

?(
m
a
k
e
-
a
d
j
u
n
c
t A

,
B
)

?(make-subjectA,B)

?(
sc
an
(w
ord

)A,
B
)

?(
sc
an
-w
or
d A

,

B
)

. . .

. .
.

. . .

. . .

Gregoromichelaki, Eleni CLASP 02/12/20 10/60

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

Alice to Bob: “Boris!”

abort

abort

abort

?(
s
c
a
n
A
,
B
(w

or
ld
))

?(
u
t
t
e
r
B
(B

o
ri
s
))

?(
m
a
k
e B

(g
es
tu
re
))

?(m
a
k
e
A
,B (handshake))

?(utterA(Boris))

?(
ma
ke
A
(s
mi
le
))

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

?(
m
a
k
e
-
a
d
j
u
n
c
t A

,
B
)

?(make-subjectA,B)

?(
sc
an
(w
ord

)A,
B
)

?(
sc
an
-w
or
d A

,

B
)

. . .

?(
sc
an
-w
or
d A

,

B
)

. .
.

. . .

. . .

Gregoromichelaki, Eleni CLASP 02/12/20 10/60

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

Alice to Bob: “Boris!”

abort

abort

abort

?(
s
c
a
n
A
,
B
(w

or
ld
))

?(
u
t
t
e
r
B
(B

o
ri
s
))

?(
m
a
k
e B

(g
es
tu
re
))

?(m
a
k
e
A
,B (handshake))

?(utterA(Boris))

?(
ma
ke
A
(s
mi
le
))

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

?(
m
a
k
e
-
a
d
j
u
n
c
t A

,
B
)

?(make-subjectA,B)

?(
sc
an
(w
ord

)A,
B
)

?(
sc
an
-w
or
d A

,

B
)

. . .

?(
sc
an
-w
or
d A

,

B
)

. . .

...

..
.

..
.

. . .

. . .

. . .
.

.

. . .

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

. .
.

. . .

. . .

Gregoromichelaki, Eleni CLASP 02/12/20 10/60

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

Alice to Bob: “Boris!”

abort

abort

abort

?(
s
c
a
n
A
,
B
(w

or
ld
))

?(
u
t
t
e
r
B
(B

o
ri
s
))

?(
m
a
k
e B

(g
es
tu
re
))

?(m
a
k
e
A
,B (handshake))

?(utterA(Boris))

?(
ma
ke
A
(s
mi
le
))

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

?(
m
a
k
e
-
a
d
j
u
n
c
t A

,
B
)

?(make-subjectA,B)

?(
sc
an
(w
ord

)A,
B
)

?(
sc
an
-w
or
d A

,

B
)

. . .

?(
sc
an
-w
or
d A

,

B
)

. . .

...

..
.

..
.

. . .

. . .

. . .
.

.

. . .

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

. . .

. .
.

. . .

. . .

Gregoromichelaki, Eleni CLASP 02/12/20 10/60

fractal structure of state transition system

(red path indicates the selected course of action)

?makeA,B(TTR-type)

Alice to Bob: “Boris!”

abort

abort

abort

abort

abort

?(
s
c
a
n
A
,
B
(w

or
ld
))

?(
u
t
t
e
r
B
(B

o
ri
s
))

?(
m
a
k
e B

(g
es
tu
re
))

?(m
a
k
e
A
,B (handshake))

?(utterA(Boris))

?(
ma
ke
A
(s
mi
le
))

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

?(
m
a
k
e
-
a
d
j
u
n
c
t A

,
B
)

?(make-subjectA,B)

?(
sc
an
(w
ord

)A,
B
)

?(
sc
an
-w
or
d A

,

B
)

. . .

?(
sc
an
-w
or
d A

,

B
)

. . .

...

..
.

..
.

. . .

. . .

. . .
.

.

. . .

?(m
a
k
e
-
u
n
f
i
x
e
d
A
,B
)

. . .

. . .

. . .

. . .

. .
.

. . .

. . .

Gregoromichelaki, Eleni CLASP 02/12/20 10/60

Outline

1 DS-TTR

2 Zoom into trees and treenodes

3 DS-TTR+

4 Appendix

Gregoromichelaki, Eleni CLASP 02/12/20 11/60

actions first
DS explains all allegedly syntactic phenomena as properties of
processing mechanisms or the structuration of affordances into
hierarchical structures

(partial) tree-structures emerge as an intermediate structural
bottleneck in the DS-TTR landscape of affordances

trees express the bifurcation of processes

root treenode1

treenode2treenode3

〈↓0〉

(≺0)

〈↓1〉(≺1)〈↓∗〉(≺∗)

treenode1 ft e

i23 01

?[

x:Ind
]

?[

e:named(x,“Boris”
] ...

.

〈Ty〉

〈Tn〉〈Fo〉

treenode2 ft e → t

λx.Walk(x) 01

. . .

.

.

〈Ty〉

〈Tn〉〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 12/60

actions first
actions as first-class citizens

Gregoromichelaki, Eleni CLASP 02/12/20 13/60

actions first
actions as first-class citizens

actions can refer to actions (for, e.g. sloppy ellipsis)

Gregoromichelaki, Eleni CLASP 02/12/20 13/60

actions first
actions as first-class citizens

actions can refer to actions (for, e.g. sloppy ellipsis)

the grammar can talk about the grammar (for, e.g.,
“metalinguistic” quotation)

Gregoromichelaki, Eleni CLASP 02/12/20 13/60

actions first
actions as first-class citizens

actions can refer to actions (for, e.g. sloppy ellipsis)

the grammar can talk about the grammar (for, e.g.,
“metalinguistic” quotation)

(if necessary,) representation as an aspect of successful
interaction [Bickhard (2009)] via predictivity

root treenode1

treenode2treenode3

〈↓0〉

(≺0)

〈↓1〉(≺1)〈↓∗〉(≺∗)

treenode1 ft e

i23 01

?[

x:Ind
]

?[

e:named(x,“Boris”
] ...

.

〈Ty〉

〈Tn〉〈Fo〉

treenode2 ft e → t

λx.Walk(x) 01

. . .

.

.

〈Ty〉

〈Tn〉〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 13/60

DS-TTR: parsing and generation

from strings to conceptual structure (TTR) or vice-versa

Gregoromichelaki, Eleni CLASP 02/12/20 14/60

DS-TTR: parsing and generation

from strings to conceptual structure (TTR) or vice-versa

John arrived.

Gregoromichelaki, Eleni CLASP 02/12/20 14/60

DS-TTR: parsing and generation

from strings to conceptual structure (TTR) or vice-versa

John arrived.

John arrived
7−→

♦,Ty(t),

[

x : john′

p : arrive′(x)

]

Ty(e),
[

x : john′
]

Ty(e → t),

λr :
[

x : e
]

.

[

x : e

p : arrive′(x)

]

Gregoromichelaki, Eleni CLASP 02/12/20 14/60

incremental construction
[start] ... prediction

7−→ ♦, ?Ty(t)

Gregoromichelaki, Eleni CLASP 02/12/20 15/60

incremental construction
prediction

7−→
?Ty(t)

♦, ?Ty(e) ?Ty(e → t)

Gregoromichelaki, Eleni CLASP 02/12/20 15/60

incremental construction
John
7−→

?Ty(t)

♦, ?Ty(e) ?Ty(e → t)

John IF ?Ty(e)
THEN put(Ty(e))

put(
[

x=john : e
]

)
ELSE abort

Gregoromichelaki, Eleni CLASP 02/12/20 15/60

incremental construction
John,...,pointer-movement

7−→
?Ty(t)

Ty(e),
[

x=john : e
]

?Ty(e → t),♦

John IF ?Ty(e)
THEN put(Ty(e))

put(
[

x=john : e
]

)
ELSE abort

Gregoromichelaki, Eleni CLASP 02/12/20 15/60

incremental construction
..., ..., arrives

→
?Ty(t)

Ty(e),
[

x=john : e
]

Ty(e → t),♦

λ r :
[

x : e
]

.









x : e
s=arrive : es
p=agent(s,x) : t
... : ...









Gregoromichelaki, Eleni CLASP 02/12/20 15/60

incremental construction
...[tense, ...], completion

→

♦,Ty(t),









x=john : e
s=arrive : es
p=agent(s,x) : t
... : ...









Ty(e),
[

x=john : e
]

Ty(e → t),

λ r :
[

x : e
]

.









x : e
s=arrive : es
p=agent(s,x) : t
... : ...









Gregoromichelaki, Eleni CLASP 02/12/20 15/60

underspecification: structural

processing non-contiguous dependencies

e.g. ‘Mary, John upset’

?Ty(t),♦

Gregoromichelaki, Eleni CLASP 02/12/20 16/60

underspecification: structural

processing non-contiguous dependencies

e.g. ‘Mary, John upset’

‘Mary

?Ty(t)

[x : mary ′],♦

Gregoromichelaki, Eleni CLASP 02/12/20 16/60

underspecification: structural

processing non-contiguous dependencies

e.g. ‘Mary, John upset’

‘Mary

?Ty(t)

[x : mary ′]
?Ty(e)

♦
?Ty(e → t)

Gregoromichelaki, Eleni CLASP 02/12/20 16/60

underspecification: structural

processing non-contiguous dependencies

e.g. ‘Mary, John upset’

‘Mary, John

?Ty(t)

[x : mary ′]
?Ty(e), [y : john′]

♦,Ty(e)
?Ty(e → t)

Gregoromichelaki, Eleni CLASP 02/12/20 16/60

underspecification: structural

processing non-contiguous dependencies

e.g. ‘Mary, John upset’

‘Mary, John

?Ty(t)

[x : mary ′]
Ty(e), [y : john′]

?Ty(e → t),♦

Gregoromichelaki, Eleni CLASP 02/12/20 16/60

underspecification: structural

processing non-contiguous dependencies

e.g. ‘Mary, John upset’

‘Mary, John upset’

?Ty(t)

[x : mary ′]
Ty(e), [y : john′]

?Ty(e → t)

?Ty(e)
♦ [...upset ′]

Gregoromichelaki, Eleni CLASP 02/12/20 16/60

underspecification: structural

processing non-contiguous dependencies

e.g. ‘Mary, John upset’

‘Mary, John upset’

?Ty(t)

[x : mary ′]
Ty(e), [y : john′]

?Ty(e → t)

?Ty(e)
♦ [...upset ′]

unify

Gregoromichelaki, Eleni CLASP 02/12/20 16/60

underspecification: structural

processing non-contiguous dependencies

e.g. ‘Mary, John upset’

‘Mary, John upset’

?Ty(t)

Ty(e), [y : john′]
?Ty(e → t),♦

Ty(e), [x : mary ′]
[...upset ′]

Gregoromichelaki, Eleni CLASP 02/12/20 16/60

underspecification: structural

processing non-contiguous dependencies

e.g. ‘Mary, John upset’

‘Mary, John upset’

Tn(0),Ty(t), [upset ′(mary ′)(john′)],♦

Ty(e), [y : john′]
Ty(e → t), [...upset ′(mary ′)]

Ty(e), [x : mary ′]
[...upset ′]

Gregoromichelaki, Eleni CLASP 02/12/20 16/60

a field of affordances

(simplified) options for starting to parse/produce Mary, John upset

T0

T2

mak
e unf

ixe
d-n

ode

T3

make “subject” node

T4

make Linked-node

T5

Mary

T9

Mary

abort

abort

Mary

T7

make ‘‘subject’’ node

T10

make Linked-node

T11

...

T12

...

T15

... ...

T13

John

abort

...

John

John

abort

Gregoromichelaki, Eleni CLASP 02/12/20 17/60

utterance micro-events

♦,Ty(t),





context : u1 ⊕ u2

content :

[

x : e

p : f (x)

]





Ty(e),
[

context : u2
content :

[

x : e
]

]

Ty(e → t),




context : u1

content : λr :
[

x : e
]

.

[

x : e

p : f (x)

]





Gregoromichelaki, Eleni CLASP 02/12/20 18/60

including contextual parameters

John arrived
7−→

♦,Ty(t),









































context :

































a : participantA
b : participantB
... : ...

u1 : utt − event
ss1 : spkr(u1, a)
sa1 : addr(u1, b)
u2 : utt − event
ss2 : spkr(u2, a)
sa2 : addr(u2, b)
... : ...

































content :

[

x : john
p : arrive(x)

]









































Ty(e),












context :









u1 : utt − event
... : ...

ss1 : spkr(u1, a)
... : ...









content :
[

x : john
]













Ty(e → t),












context :









u2 : utt − event
... : ...

ss2 : spkr(u2, a)
... : ...









content : λr : [x : e] .
[

p : arrive(x)
]













Gregoromichelaki, Eleni CLASP 02/12/20 19/60

DS-TTR: some suggestions

make types dynamic and (mainly) subpersonal

Gregoromichelaki, Eleni CLASP 02/12/20 20/60

DS-TTR: some suggestions

make types dynamic and (mainly) subpersonal

types are not within one’s head (optional)

Gregoromichelaki, Eleni CLASP 02/12/20 20/60

DS-TTR: some suggestions

make types dynamic and (mainly) subpersonal

types are not within one’s head (optional)

types are not implemented by neural processes within one
agent (optional)

types too are (triggers for) affordances

Gregoromichelaki, Eleni CLASP 02/12/20 20/60

DS-TTR: some suggestions

make types dynamic and (mainly) subpersonal

types are not within one’s head (optional)

types are not implemented by neural processes within one
agent (optional)

types too are (triggers for) affordances

they bring about properties of the environment to be picked up
by agents

Gregoromichelaki, Eleni CLASP 02/12/20 20/60

DS-TTR: some suggestions

make types dynamic and (mainly) subpersonal

types are not within one’s head (optional)

types are not implemented by neural processes within one
agent (optional)

types too are (triggers for) affordances

they bring about properties of the environment to be picked up
by agents
they are agent-relative (perspectival) properties of the
environment [(Chemero, 2010)]

Gregoromichelaki, Eleni CLASP 02/12/20 20/60

DS-TTR: some suggestions

make types dynamic and (mainly) subpersonal

types are not within one’s head (optional)

types are not implemented by neural processes within one
agent (optional)

types too are (triggers for) affordances

they bring about properties of the environment to be picked up
by agents
they are agent-relative (perspectival) properties of the
environment [(Chemero, 2010)]

types are not paired instantaneously with labels: types induce
fields of potential paths of interaction with patterns in the
environment

“the whole system of input and output resonates to the
external information” [Gibson, 1966: 5].

Gregoromichelaki, Eleni CLASP 02/12/20 20/60

Outline

1 DS-TTR

2 Zoom into trees and treenodes

3 DS-TTR+

4 Appendix

Gregoromichelaki, Eleni CLASP 02/12/20 21/60

logical structure of DS

an NL is a set of actions describing the licensed transitions
from an initial state to a result state

Gregoromichelaki, Eleni CLASP 02/12/20 22/60

logical structure of DS

an NL is a set of actions describing the licensed transitions
from an initial state to a result state

states are partially ordered

Gregoromichelaki, Eleni CLASP 02/12/20 22/60

logical structure of DS

an NL is a set of actions describing the licensed transitions
from an initial state to a result state

states are partially ordered

states are structured objects

e.g., in DS, states are decorated partial trees which map to
more elaborate trees as you go along

Gregoromichelaki, Eleni CLASP 02/12/20 22/60

logical structure of DS: trees

NL: actions from an initial state to a result state

Gregoromichelaki, Eleni CLASP 02/12/20 23/60

logical structure of DS: trees

NL: actions from an initial state to a result state
in DS, states are partial trees (in the description language DU, they are
accessed by means of modal operators)

root treenode1

treenode2treenode3

〈↓0〉

(≺0)

〈↓1〉(≺1)〈↓∗〉(≺∗)

Gregoromichelaki, Eleni CLASP 02/12/20 23/60

logical structure of DS: treenodes

DS trees are sets of states related by dominance (modal)
operators

in turn, each tree node is inhabited by a feature structure

an instance of “fibred semantics”[Finger, Marcelo and Gabbay, Dov (1992)]

feature structures are labelled directed graphs

features (partial functions) like Fo, Tn, Ty , . . .

nesting of features is possible

values (“decorations”) like e, eleni ′, 010, . . .

AVM notation:

tn01:





Type e → t

Formula λxWalk(x)
TreeNode 01





Gregoromichelaki, Eleni CLASP 02/12/20 24/60

logical structure of DS: decorations

a treenode is a state

Gregoromichelaki, Eleni CLASP 02/12/20 25/60

logical structure of DS: decorations

a treenode is a state

each treenode is assigned a feature structure

Gregoromichelaki, Eleni CLASP 02/12/20 25/60

logical structure of DS: decorations

a treenode is a state

each treenode is assigned a feature structure

labels are modal operators:

Gregoromichelaki, Eleni CLASP 02/12/20 25/60

logical structure of DS: decorations

a treenode is a state

each treenode is assigned a feature structure

labels are modal operators:

treenode ft e → t

λx.Walk(x) 01

〈Ty〉

〈Tn〉〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 25/60

logical structure of DS: requirements

each treenode is decorated by a feature structure (labelled
directed graph) with features like Fo, Tn, Ty

Gregoromichelaki, Eleni CLASP 02/12/20 26/60

logical structure of DS: requirements

each treenode is decorated by a feature structure (labelled
directed graph) with features like Fo, Tn, Ty

a pointer (a proposition holding at only one node of a tree
model) defines an equivalence class of tree models

Gregoromichelaki, Eleni CLASP 02/12/20 26/60

logical structure of DS: requirements

each treenode is decorated by a feature structure (labelled
directed graph) with features like Fo, Tn, Ty

a pointer (a proposition holding at only one node of a tree
model) defines an equivalence class of tree models

besides resolved feature structures, each treenode is also
assigned a set of requirements

Gregoromichelaki, Eleni CLASP 02/12/20 26/60

logical structure of DS: requirements

each treenode is decorated by a feature structure (labelled
directed graph) with features like Fo, Tn, Ty

a pointer (a proposition holding at only one node of a tree
model) defines an equivalence class of tree models

besides resolved feature structures, each treenode is also
assigned a set of requirements

all (atomic) decorations can appear as requirements

Gregoromichelaki, Eleni CLASP 02/12/20 26/60

logical structure of DS: requirements

each treenode is decorated by a feature structure (labelled
directed graph) with features like Fo, Tn, Ty

a pointer (a proposition holding at only one node of a tree
model) defines an equivalence class of tree models

besides resolved feature structures, each treenode is also
assigned a set of requirements

all (atomic) decorations can appear as requirements

AVM notation:

tn01:





Tn 01
Type e → t

Fo x





Gregoromichelaki, Eleni CLASP 02/12/20 26/60

logical structure of DS: requirements

each treenode is decorated by a feature structure (labelled
directed graph) with features like Fo, Tn, Ty

a pointer (a proposition holding at only one node of a tree
model) defines an equivalence class of tree models

besides resolved feature structures, each treenode is also
assigned a set of requirements

all (atomic) decorations can appear as requirements

AVM notation:

tn01:





Tn 01
Type e → t

Fo x





DUF (?) language notation

〈Tn〉(01) • ?〈Ty〉(e), ?∃(x)〈Fo〉(x)

Gregoromichelaki, Eleni CLASP 02/12/20 26/60

DS-TTR: TTR types as Fo values

treenode e

[

x:Ind
e:named(x, “Eleni”)

]

00

〈Ty〉

〈Tn〉

〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 27/60

logical structure of DS

current versions of DS-TTR: each treenode is inhabited by a
TTR type within the label equivalent to Fo

treenode e

[

x:Ind
e:named(x, “Eleni”)

]

00

〈Ty〉

〈Tn〉

〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 28/60

logical structure of DS

current versions of DS-TTR: each treenode is inhabited by a
TTR type within the label equivalent to Fo
however, we want to be able to zoom into such Fo values

treenode e

[

x:Ind
e:named(x, “Eleni”)

]

00

〈Ty〉

〈Tn〉

〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 28/60

logical structure of DS

current versions of DS-TTR: each treenode is inhabited by a
TTR type within the label equivalent to Fo
however, we want to be able to zoom into such Fo values

decompose TTR record types

in order to create such types incrementally

treenode e

[

x:Ind
e:named(x, “Eleni”)

]

00

〈Ty〉

〈Tn〉

〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 28/60

logical structure of DS

current versions of DS-TTR: each treenode is inhabited by a
TTR type within the label equivalent to Fo
however, we want to be able to zoom into such Fo values

decompose TTR record types

in order to create such types incrementally
we can exploit predictions to start from some empty or
underspecified type to more elaborate types

treenode e

[

x:Ind
e:named(x, “Eleni”)

]

00

〈Ty〉

〈Tn〉

〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 28/60

logical structure of DS

current versions of DS-TTR: each treenode is inhabited by a
TTR type within the label equivalent to Fo
however, we want to be able to zoom into such Fo values

decompose TTR record types

in order to create such types incrementally
we can exploit predictions to start from some empty or
underspecified type to more elaborate types
moving along the subtype relation

treenode e

[

x:Ind
e:named(x, “Eleni”)

]

00

〈Ty〉

〈Tn〉

〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 28/60

logical structure of DS

current versions of DS-TTR: each treenode is inhabited by a
TTR type within the label equivalent to Fo
however, we want to be able to zoom into such Fo values

decompose TTR record types

in order to create such types incrementally
we can exploit predictions to start from some empty or
underspecified type to more elaborate types
moving along the subtype relation

introduce requirements to impose further specification

additionally, we can “internalise” trees in TTR types so that it
is whole TTR types that are extended by DS actions

treenode e

[

x:Ind
e:named(x, “Eleni”)

]

00

〈Ty〉

〈Tn〉

〈Fo〉

Gregoromichelaki, Eleni CLASP 02/12/20 28/60

logical structure of TTR: version 1 (conservative)

assign syntactic structure to record types

typing judgements are propositions that hold at nodes

fields are indexed

r n2 x : Ind

n3 s1 : Human(x) n4 s2 : named(x ,“Eleni ′′)

〈f1〉

〈f2〉〈f3〉

Gregoromichelaki, Eleni CLASP 02/12/20 29/60

logical structure of TTR: version 2a

a record type is a state (an initial, base, state)
labels (discourse referents) are represented as modal operators (features)
entities are nodes

r n1 Ind

n2

λz .blond(z) ∧
〈

z : 〈s2〉〈x〉 :, 〈0〉n1
〉

n3

λy .named(y ,“Eleni ′′) ∧
〈

y : 〈s1〉〈x〉 , 〈0〉n1
〉

〈x〉

〈s1〉〈s2〉

Gregoromichelaki, Eleni CLASP 02/12/20 30/60

logical structure of TTR: version 2b

a record type is a state (an initial state)
labels are represented as modal operators
node names are nominals in Hybrid Logic [(Blackburn, 2000)]

this will bring us close to the Duesseldorf Frames implementation
[Kallmeyer and Osswald (2013); Kallmeyer et al. (2015)]

types are (predicates of) states:

r i Ind

j blond(@i) k named(@i ,“Eleni ′′)

〈x〉

〈s1〉〈s2〉

but then do we still need labels?

Gregoromichelaki, Eleni CLASP 02/12/20 31/60

logical structure of TTR: set-theoretic structures

ontology

Gregoromichelaki, Eleni CLASP 02/12/20 32/60

logical structure of TTR: set-theoretic structures

ontology

urelements proper (up, entities)

Gregoromichelaki, Eleni CLASP 02/12/20 32/60

logical structure of TTR: set-theoretic structures

ontology

urelements proper (up, entities)
labels (l , i.e., discourse referents)

labels are entities in the world, at the same level as ordinary
individuals

Gregoromichelaki, Eleni CLASP 02/12/20 32/60

logical structure of TTR: set-theoretic structures

ontology

urelements proper (up, entities)
labels (l , i.e., discourse referents)

labels are entities in the world, at the same level as ordinary
individuals

labelled sets (ls): sets of ordered pairs 〈l , up〉 or 〈l , ls〉

Gregoromichelaki, Eleni CLASP 02/12/20 32/60

logical structure of TTR: set-theoretic structures

ontology

urelements proper (up, entities)
labels (l , i.e., discourse referents)

labels are entities in the world, at the same level as ordinary
individuals

labelled sets (ls): sets of ordered pairs 〈l , up〉 or 〈l , ls〉

basic types are interpreted as sets

Gregoromichelaki, Eleni CLASP 02/12/20 32/60

logical structure of TTR: set-theoretic structures

ontology

urelements proper (up, entities)
labels (l , i.e., discourse referents)

labels are entities in the world, at the same level as ordinary
individuals

labelled sets (ls): sets of ordered pairs 〈l , up〉 or 〈l , ls〉

basic types are interpreted as sets

an entity (picked up by a label) is of some type if it’s a
member of the set assigned to the type

Gregoromichelaki, Eleni CLASP 02/12/20 32/60

logical structure of TTR: set-theoretic structures

ontology

urelements proper (up, entities)
labels (l , i.e., discourse referents)

labels are entities in the world, at the same level as ordinary
individuals

labelled sets (ls): sets of ordered pairs 〈l , up〉 or 〈l , ls〉

basic types are interpreted as sets

an entity (picked up by a label) is of some type if it’s a
member of the set assigned to the type

labelled sets are the basic structure for building complex types

Gregoromichelaki, Eleni CLASP 02/12/20 32/60

logical structure of TTR: set-theoretic structures

ontology

urelements proper (up, entities)
labels (l , i.e., discourse referents)

labels are entities in the world, at the same level as ordinary
individuals

labelled sets (ls): sets of ordered pairs 〈l , up〉 or 〈l , ls〉

basic types are interpreted as sets

an entity (picked up by a label) is of some type if it’s a
member of the set assigned to the type

labelled sets are the basic structure for building complex types

Gregoromichelaki, Eleni CLASP 02/12/20 32/60

logical structure of TTR: ptypes

ptypes (predicative types) P(a1, ..., an), are combinations of
predicates and arguments of particular types

Gregoromichelaki, Eleni CLASP 02/12/20 33/60

logical structure of TTR: ptypes

ptypes (predicative types) P(a1, ..., an), are combinations of
predicates and arguments of particular types

ptypes are assigned sets of entities, labelled sets:
{〈 pred ,P〉, 〈arg1, a1〉 , . . . , 〈argn, an〉}

Gregoromichelaki, Eleni CLASP 02/12/20 33/60

logical structure of TTR: ptypes

ptypes (predicative types) P(a1, ..., an), are combinations of
predicates and arguments of particular types

ptypes are assigned sets of entities, labelled sets:
{〈 pred ,P〉, 〈arg1, a1〉 , . . . , 〈argn, an〉}

node n like

john mary

〈pred〉

〈arg1〉〈arg2〉

Gregoromichelaki, Eleni CLASP 02/12/20 33/60

logical structure of TTR: ptypes as in DS-TTR -
Neodavidsonian (a)

ptypes (predicative types) P(a1, ..., an), are combinations of
predicates and arguments of particular types

Gregoromichelaki, Eleni CLASP 02/12/20 34/60

logical structure of TTR: ptypes as in DS-TTR -
Neodavidsonian (a)

ptypes (predicative types) P(a1, ..., an), are combinations of
predicates and arguments of particular types

ptypes are assigned sets of entities, labelled sets:
{〈 pred ,P〉, 〈arg1, a1〉 , . . . , 〈argn, an〉}

Gregoromichelaki, Eleni CLASP 02/12/20 34/60

logical structure of TTR: ptypes as in DS-TTR -
Neodavidsonian (a)

ptypes (predicative types) P(a1, ..., an), are combinations of
predicates and arguments of particular types

ptypes are assigned sets of entities, labelled sets:
{〈 pred ,P〉, 〈arg1, a1〉 , . . . , 〈argn, an〉}

node n see

john mary

〈event − type〉

〈Agent〉〈Patient〉

Gregoromichelaki, Eleni CLASP 02/12/20 34/60

logical structure of TTR: version Neodavidsonian (b)

ptypes P(a1, ..., an), are combinations of predicates and
arguments of particular types

Gregoromichelaki, Eleni CLASP 02/12/20 35/60

logical structure of TTR: version Neodavidsonian (b)

ptypes P(a1, ..., an), are combinations of predicates and
arguments of particular types

ptypes are assigned sets of entities, labelled sets
{〈 pred ,P〉, 〈arg1, a1〉 , . . . , 〈argn, an〉}

Gregoromichelaki, Eleni CLASP 02/12/20 35/60

logical structure of TTR: version Neodavidsonian (b)

ptypes P(a1, ..., an), are combinations of predicates and
arguments of particular types

ptypes are assigned sets of entities, labelled sets
{〈 pred ,P〉, 〈arg1, a1〉 , . . . , 〈argn, an〉}

a record type is a state, labels are modal operators, values are
states: [e: hug(john, mary)]

Gregoromichelaki, Eleni CLASP 02/12/20 35/60

logical structure of TTR: version Neodavidsonian (b)

ptypes P(a1, ..., an), are combinations of predicates and
arguments of particular types

ptypes are assigned sets of entities, labelled sets
{〈 pred ,P〉, 〈arg1, a1〉 , . . . , 〈argn, an〉}

a record type is a state, labels are modal operators, values are
states: [e: hug(john, mary)]

r n hug

john mary

〈e〉 〈event − type〉

〈Agent〉〈Patient〉

Gregoromichelaki, Eleni CLASP 02/12/20 35/60

logical structure of TTR: version (4a)

labels are modal operators

r i Ind

j

“Eleni ′′ : String

k

λxy .named(〈arg2〉x ,〈arg1〉y)

〈x〉

〈s1〉〈s2〉

〈arg1〉

〈arg2〉

Gregoromichelaki, Eleni CLASP 02/12/20 36/60

logical structure of TTR: situational version 4b

labels are names of states, types are feature names (modal
operators)

Gregoromichelaki, Eleni CLASP 02/12/20 37/60

logical structure of TTR: situational version 4b

labels are names of states, types are feature names (modal
operators)

individuals are situations

Gregoromichelaki, Eleni CLASP 02/12/20 37/60

logical structure of TTR: situational version 4b

labels are names of states, types are feature names (modal
operators)

individuals are situations

predicates are feature names (modal operators)

Gregoromichelaki, Eleni CLASP 02/12/20 37/60

logical structure of TTR: situational version 4b

labels are names of states, types are feature names (modal
operators)

individuals are situations

predicates are feature names (modal operators)

s1sit x Ind

“Eleni ′′

seq sounds/letters
s2 sit

〈named ind〉

〈name〉

〈human〉

Gregoromichelaki, Eleni CLASP 02/12/20 37/60

actions in DS: PDL

Propositional Dynamic Logic (PDL) is a modal logic
introduced to capture the behaviour of programs

Gregoromichelaki, Eleni CLASP 02/12/20 38/60

actions in DS: PDL

Propositional Dynamic Logic (PDL) is a modal logic
introduced to capture the behaviour of programs
the models for PDL formulas are transition systems

edges are labelled with programs (actions)
states are labelled with propositions

Gregoromichelaki, Eleni CLASP 02/12/20 38/60

actions in DS: PDL

Propositional Dynamic Logic (PDL) is a modal logic
introduced to capture the behaviour of programs
the models for PDL formulas are transition systems

edges are labelled with programs (actions)
states are labelled with propositions

complex formulae (e.g. decorated trees, TTR types) and
programs (DS macros) are inductively (and mutually) defined
from atomic propositions and programs

Gregoromichelaki, Eleni CLASP 02/12/20 38/60

actions in DS: PDL

Propositional Dynamic Logic (PDL) is a modal logic
introduced to capture the behaviour of programs
the models for PDL formulas are transition systems

edges are labelled with programs (actions)
states are labelled with propositions

complex formulae (e.g. decorated trees, TTR types) and
programs (DS macros) are inductively (and mutually) defined
from atomic propositions and programs

formulas are closed by (at least) the standard Boolean
operations

Gregoromichelaki, Eleni CLASP 02/12/20 38/60

actions in DS: PDL

Propositional Dynamic Logic (PDL) is a modal logic
introduced to capture the behaviour of programs
the models for PDL formulas are transition systems

edges are labelled with programs (actions)
states are labelled with propositions

complex formulae (e.g. decorated trees, TTR types) and
programs (DS macros) are inductively (and mutually) defined
from atomic propositions and programs

formulas are closed by (at least) the standard Boolean
operations

a program is a regular language (represented by a regular
expression / finite automaton) over the set of atomic
programs and tests (where tests correspond to formulas)

Gregoromichelaki, Eleni CLASP 02/12/20 38/60

actions in DS: PDL

Propositional Dynamic Logic (PDL) is a modal logic
introduced to capture the behaviour of programs
the models for PDL formulas are transition systems

edges are labelled with programs (actions)
states are labelled with propositions

complex formulae (e.g. decorated trees, TTR types) and
programs (DS macros) are inductively (and mutually) defined
from atomic propositions and programs

formulas are closed by (at least) the standard Boolean
operations

a program is a regular language (represented by a regular
expression / finite automaton) over the set of atomic
programs and tests (where tests correspond to formulas)

for each program α and each formula (tree, TTR-type) ϕ,
〈α〉ϕ or 〈do(α)〉ϕ is a formula

this means that there is an execution of program α that ends
in a state where ϕ holds

Gregoromichelaki, Eleni CLASP 02/12/20 38/60

actions in DS: specialisation of PDL

an NL is a set of actions (programs) describing the licensed
transitions from an initial state to a result state

Gregoromichelaki, Eleni CLASP 02/12/20 39/60

actions in DS: specialisation of PDL

an NL is a set of actions (programs) describing the licensed
transitions from an initial state to a result state

states in DS: inhabited by pointed (partial) decorated trees

Gregoromichelaki, Eleni CLASP 02/12/20 39/60

actions in DS: specialisation of PDL

an NL is a set of actions (programs) describing the licensed
transitions from an initial state to a result state

states in DS: inhabited by pointed (partial) decorated trees

licensing of transitions between pointed-partial-tree decorated
states: NL rules/words and inferences

Gregoromichelaki, Eleni CLASP 02/12/20 39/60

actions in DS: specialisation of PDL

an NL is a set of actions (programs) describing the licensed
transitions from an initial state to a result state

states in DS: inhabited by pointed (partial) decorated trees

licensing of transitions between pointed-partial-tree decorated
states: NL rules/words and inferences

e.g. from Axiom (?Ty(t)) to a complete Ty(t) tree

via a partial ordering ≤ on tree models

Gregoromichelaki, Eleni CLASP 02/12/20 39/60

actions in DS: specialisation of PDL

an NL is a set of actions (programs) describing the licensed
transitions from an initial state to a result state

states in DS: inhabited by pointed (partial) decorated trees

licensing of transitions between pointed-partial-tree decorated
states: NL rules/words and inferences

e.g. from Axiom (?Ty(t)) to a complete Ty(t) tree

via a partial ordering ≤ on tree models

DS actions:

lexical
computational
pragmatic (Substitution, scope resolution, inference)

Gregoromichelaki, Eleni CLASP 02/12/20 39/60

actions in DS: specialisation of PDL

in DS, an action constant (program) α determines a binary
relation among decorated pointed partial trees (the models):
(〈PPT M, T n〉 , 〈PPT M, T ′n′〉)

Gregoromichelaki, Eleni CLASP 02/12/20 40/60

actions in DS: specialisation of PDL

in DS, an action constant (program) α determines a binary
relation among decorated pointed partial trees (the models):
(〈PPT M, T n〉 , 〈PPT M, T ′n′〉)

the second member of the relation extends the first in some
way

Gregoromichelaki, Eleni CLASP 02/12/20 40/60

actions in DS: specialisation of PDL

in DS, an action constant (program) α determines a binary
relation among decorated pointed partial trees (the models):
(〈PPT M, T n〉 , 〈PPT M, T ′n′〉)

the second member of the relation extends the first in some
way

actions in DS are specialised for building structures of
decorated trees

need to be extended for TTR, where TTR operations are not
adequate

add[fields]
remove[fields]
test[subtyping relation]
. . .

Gregoromichelaki, Eleni CLASP 02/12/20 40/60

actions in DS: specialisation of PDL

in DS, an action constant (program) α determines a binary
relation among decorated pointed partial trees (the models):
(〈PPT M, T n〉 , 〈PPT M, T ′n′〉)

the second member of the relation extends the first in some
way

actions in DS are specialised for building structures of
decorated trees

need to be extended for TTR, where TTR operations are not
adequate

add[fields]
remove[fields]
test[subtyping relation]
. . .

ACT , the set of basic actions, consists of action constants:
ACT = {ABORT, 1, make(#), put(Σ), go(#), merg(#)}

Gregoromichelaki, Eleni CLASP 02/12/20 40/60

actions in DS

in DS, an action constant α determines a binary relation
among decorated pointed partial trees (the models)

Gregoromichelaki, Eleni CLASP 02/12/20 41/60

actions in DS

in DS, an action constant α determines a binary relation
among decorated pointed partial trees (the models)

the action modalities formulae [α] and 〈α〉 are interpreted as
follows:

Gregoromichelaki, Eleni CLASP 02/12/20 41/60

actions in DS

in DS, an action constant α determines a binary relation
among decorated pointed partial trees (the models)

the action modalities formulae [α] and 〈α〉 are interpreted as
follows:

〈PPT M, T n〉 � [α]φ

Gregoromichelaki, Eleni CLASP 02/12/20 41/60

actions in DS

in DS, an action constant α determines a binary relation
among decorated pointed partial trees (the models)

the action modalities formulae [α] and 〈α〉 are interpreted as
follows:

〈PPT M, T n〉 � [α]φ
iff for all T ′n′ ∈ PPTM such that α (T n, T ′n′) we have
〈PPT M, T ′n′〉 � φ

Gregoromichelaki, Eleni CLASP 02/12/20 41/60

actions in DS

in DS, an action constant α determines a binary relation
among decorated pointed partial trees (the models)

the action modalities formulae [α] and 〈α〉 are interpreted as
follows:

〈PPT M, T n〉 � [α]φ
iff for all T ′n′ ∈ PPTM such that α (T n, T ′n′) we have
〈PPT M, T ′n′〉 � φ
〈PPT M, T n〉 � 〈α〉φ
iff there is some T ′n′ ∈ PPTM such that α (T n, T ′n′) and
〈PPT M, T ′n′〉 � φ

Gregoromichelaki, Eleni CLASP 02/12/20 41/60

actions as modal operators in DS

〈α1〉φ
〈α2〉¬φ

φ

¬φ

α1

α2

Gregoromichelaki, Eleni CLASP 02/12/20 42/60

composite actions in DS

given ACT , the set of basic actions consisting of
ACT = {ABORT, 1, make(#), put(Σ), go(#), merg(#)}

Gregoromichelaki, Eleni CLASP 02/12/20 43/60

composite actions in DS

given ACT , the set of basic actions consisting of
ACT = {ABORT, 1, make(#), put(Σ), go(#), merg(#)}

basic actions are combined by the regular operations

plus an IF THEN ELSE construction

Gregoromichelaki, Eleni CLASP 02/12/20 43/60

composite actions in DS

given ACT , the set of basic actions consisting of
ACT = {ABORT, 1, make(#), put(Σ), go(#), merg(#)}

basic actions are combined by the regular operations

plus an IF THEN ELSE construction

to form A(ACT), the set of composite actions

Gregoromichelaki, Eleni CLASP 02/12/20 43/60

composite actions in DS

given ACT , the set of basic actions consisting of
ACT = {ABORT, 1, make(#), put(Σ), go(#), merg(#)}

basic actions are combined by the regular operations

plus an IF THEN ELSE construction

to form A(ACT), the set of composite actions

the set A(ACT) is the smallest set in PPTM × PPTM

satisfying

1. ACT ⊆ A(ACT), and

2. for α, α′ ∈ A(ACT),Σ(x) ⊆ DUF (?),
where x is a sequence of all variables occurring free in Σ, we
have α;α′, α+ α′, α∗, 〈Σ(x), α, α′〉 ∈ A(ACT) where ; ,+, ∗
have their usual interpretation and
〈Σ(x), α, α′〉 =
{〈T n, T ′n′〉 ∈ α[t/x] |t ∈ (D ∪MV)∗, 〈PPT M, T n〉| = Σ[t/x]}
{〈T n, T ′n′〉 ∈ α′|¬∃t ∈ (D ∪MV)∗, 〈PPT M, T n〉 = Σ[t/x]}

Gregoromichelaki, Eleni CLASP 02/12/20 43/60

actions in DS: macros

elements of A(ACT), the set of composite actions, can be
combined into macros, actions executed in sequence:

lexical actions
Introduction-Prediction, Completion, Elimination,
LINK-introduction, . . .

Gregoromichelaki, Eleni CLASP 02/12/20 44/60

actions in DS: macros

elements of A(ACT), the set of composite actions, can be
combined into macros, actions executed in sequence:

lexical actions
Introduction-Prediction, Completion, Elimination,
LINK-introduction, . . .

DS actions develop decorated trees

lexical
computational

can be translated as IF-THEN-ELSE composites

pragmatic

Substitution,
scope resolution
(pragmatic) inference

Gregoromichelaki, Eleni CLASP 02/12/20 44/60

actions in DS: macros

elements of A(ACT), the set of composite actions, can be
combined into macros, actions executed in sequence:

lexical actions
Introduction-Prediction, Completion, Elimination,
LINK-introduction, . . .

DS actions develop decorated trees

lexical
computational

can be translated as IF-THEN-ELSE composites

pragmatic

Substitution,
scope resolution
(pragmatic) inference

Gregoromichelaki, Eleni CLASP 02/12/20 44/60

actions in DS-TTR

DS-TTR actions: use extended set of DS actions to build
incrementally structured Fo values as shown earlier

each state is a (partial) TTR record type
described by a modal formula (“feature structure”) concerning
its structure and requirements

with transitions licensed via the subtype relation (ordering ≤)

e.g. from an empty TTR type to a further specified TTR type

Gregoromichelaki, Eleni CLASP 02/12/20 45/60

actions in DS-TTR

DS-TTR actions: use extended set of DS actions to build
incrementally structured Fo values as shown earlier

each state is a (partial) TTR record type
described by a modal formula (“feature structure”) concerning
its structure and requirements

with transitions licensed via the subtype relation (ordering ≤)

e.g. from an empty TTR type to a further specified TTR type

but remove maximal states from DS models

remove restriction that elimination of requirements
(predictions) is criterion of wellformedness

requirements are constantly generated and always present to
guide further development

Gregoromichelaki, Eleni CLASP 02/12/20 45/60

physical actions in DS-TTR

exploit PDL specialisations (multimodal languages) in the
literature

Gregoromichelaki, Eleni CLASP 02/12/20 46/60

physical actions in DS-TTR

exploit PDL specialisations (multimodal languages) in the
literature

introduce operators for results, opportunity, ability, “epistemic
status”, etc.

Gregoromichelaki, Eleni CLASP 02/12/20 46/60

physical actions in DS-TTR

exploit PDL specialisations (multimodal languages) in the
literature

introduce operators for results, opportunity, ability, “epistemic
status”, etc.

specify actions/abilities/opportunities for various agents
operator indices representing actions (mental or physical) by
various agents

Gregoromichelaki, Eleni CLASP 02/12/20 46/60

physical actions in DS-TTR

exploit PDL specialisations (multimodal languages) in the
literature

introduce operators for results, opportunity, ability, “epistemic
status”, etc.

specify actions/abilities/opportunities for various agents
operator indices representing actions (mental or physical) by
various agents

the ability of each agent is formalised by a factual
(non-modal) operator AB

stands for each agent’s skills

Gregoromichelaki, Eleni CLASP 02/12/20 46/60

physical actions in DS-TTR

exploit PDL specialisations (multimodal languages) in the
literature

introduce operators for results, opportunity, ability, “epistemic
status”, etc.

specify actions/abilities/opportunities for various agents
operator indices representing actions (mental or physical) by
various agents

the ability of each agent is formalised by a factual
(non-modal) operator AB

stands for each agent’s skills

results and opportunities formalised as in PDL of the DS kind,
only allow different agents to be assigned actions

〈doi (α)〉ϕ means that agent i has the opportunity to perform
the action α so that ϕ will result from this performance

Gregoromichelaki, Eleni CLASP 02/12/20 46/60

physical actions in DS-TTR

exploit PDL specialisations (multimodal languages) in the
literature

introduce operators for results, opportunity, ability, “epistemic
status”, etc.

specify actions/abilities/opportunities for various agents
operator indices representing actions (mental or physical) by
various agents

the ability of each agent is formalised by a factual
(non-modal) operator AB

stands for each agent’s skills

results and opportunities formalised as in PDL of the DS kind,
only allow different agents to be assigned actions

〈doi (α)〉ϕ means that agent i has the opportunity to perform
the action α so that ϕ will result from this performance

e.g., for coverbal gestures, exploit ASL formalisation of
gesture formats and assign interpretations, e.g., social relation
affordances instituted

Gregoromichelaki, Eleni CLASP 02/12/20 46/60

DS-TTR+: adding physical actions

introduce a language LDS(TTR) to serve as propositional
language based
on a set TTR of TTR-type structures (tree-structured?)

Gregoromichelaki, Eleni CLASP 02/12/20 47/60

DS-TTR+: adding physical actions

introduce a language LDS(TTR) to serve as propositional
language based
on a set TTR of TTR-type structures (tree-structured?)

ordered across the subtyping relation

Gregoromichelaki, Eleni CLASP 02/12/20 47/60

DS-TTR+: adding physical actions

introduce a language LDS(TTR) to serve as propositional
language based
on a set TTR of TTR-type structures (tree-structured?)

ordered across the subtyping relation

form the language LDS−TTR(LDS(TTR),AG,ACT), based on
the sets of propositions (LDS(TTR)), agents (AG), and
atomic DS actions (ACT)

plus a set of requirements (?φ) for each LDS−TTR formula φ

Gregoromichelaki, Eleni CLASP 02/12/20 47/60

DS-TTR+: adding physical actions

introduce a language LDS(TTR) to serve as propositional
language based
on a set TTR of TTR-type structures (tree-structured?)

ordered across the subtyping relation

form the language LDS−TTR(LDS(TTR),AG,ACT), based on
the sets of propositions (LDS(TTR)), agents (AG), and
atomic DS actions (ACT)

plus a set of requirements (?φ) for each LDS−TTR formula φ

the language contains:
(at least) the propositional connectives (plus TTR operations),
the execution and result operator 〈do ()〉 ,
the ability operator AB ,
the action constructors:

confirm (confirmations/tests),
; (sequential composition),
if then else (conditional composition) and
while do (repetitive composition)

Gregoromichelaki, Eleni CLASP 02/12/20 47/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

action constructors form the A(ACT) from ACT

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

action constructors form the A(ACT) from ACT

if φ ∈ LDS−TTR then

confirm ϕ ∈ A(ACT)

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

action constructors form the A(ACT) from ACT

if φ ∈ LDS−TTR then

confirm ϕ ∈ A(ACT)
α1;α2 ∈ A(ACT): sequential composition

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

action constructors form the A(ACT) from ACT

if φ ∈ LDS−TTR then

confirm ϕ ∈ A(ACT)
α1;α2 ∈ A(ACT): sequential composition
IF φ THEN α1 ELSE α2 ∈ A(ACT): conditional composition
(confirm/observe/test φ and then perform action 1,
otherwise perform action 2)

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

action constructors form the A(ACT) from ACT

if φ ∈ LDS−TTR then

confirm ϕ ∈ A(ACT)
α1;α2 ∈ A(ACT): sequential composition
IF φ THEN α1 ELSE α2 ∈ A(ACT): conditional composition
(confirm/observe/test φ and then perform action 1,
otherwise perform action 2)
while φ do α ∈ A(ACT): repetitive composition

actions, outcomes, abilities, opportunities

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

action constructors form the A(ACT) from ACT

if φ ∈ LDS−TTR then

confirm ϕ ∈ A(ACT)
α1;α2 ∈ A(ACT): sequential composition
IF φ THEN α1 ELSE α2 ∈ A(ACT): conditional composition
(confirm/observe/test φ and then perform action 1,
otherwise perform action 2)
while φ do α ∈ A(ACT): repetitive composition

actions, outcomes, abilities, opportunities

if φ ∈ LDS−TTR, i ∈ AG, α ∈ A(ACT) then

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

action constructors form the A(ACT) from ACT

if φ ∈ LDS−TTR then

confirm ϕ ∈ A(ACT)
α1;α2 ∈ A(ACT): sequential composition
IF φ THEN α1 ELSE α2 ∈ A(ACT): conditional composition
(confirm/observe/test φ and then perform action 1,
otherwise perform action 2)
while φ do α ∈ A(ACT): repetitive composition

actions, outcomes, abilities, opportunities

if φ ∈ LDS−TTR, i ∈ AG, α ∈ A(ACT) then
ABiα ∈ LDS−TTR (agent i has the skill to execute α)

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

action constructors form the A(ACT) from ACT

if φ ∈ LDS−TTR then

confirm ϕ ∈ A(ACT)
α1;α2 ∈ A(ACT): sequential composition
IF φ THEN α1 ELSE α2 ∈ A(ACT): conditional composition
(confirm/observe/test φ and then perform action 1,
otherwise perform action 2)
while φ do α ∈ A(ACT): repetitive composition

actions, outcomes, abilities, opportunities

if φ ∈ LDS−TTR, i ∈ AG, α ∈ A(ACT) then
ABiα ∈ LDS−TTR (agent i has the skill to execute α)
〈doi (α)〉φ ∈ LDS−TTR (agent i has the opportunity to
execute α and φ will ensue)

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

the language L
DS−TTR

introduce all the propositional connectives:

ϕ, ψ ∈ LDS−TTR implies
¬ϕ,ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ,ϕ↔ ψ, ,⊤,⊥ ∈ LDS−TTR

action constructors form the A(ACT) from ACT

if φ ∈ LDS−TTR then

confirm ϕ ∈ A(ACT)
α1;α2 ∈ A(ACT): sequential composition
IF φ THEN α1 ELSE α2 ∈ A(ACT): conditional composition
(confirm/observe/test φ and then perform action 1,
otherwise perform action 2)
while φ do α ∈ A(ACT): repetitive composition

actions, outcomes, abilities, opportunities

if φ ∈ LDS−TTR, i ∈ AG, α ∈ A(ACT) then
ABiα ∈ LDS−TTR (agent i has the skill to execute α)
〈doi (α)〉φ ∈ LDS−TTR (agent i has the opportunity to
execute α and φ will ensue)

Gregoromichelaki, Eleni CLASP 02/12/20 48/60

application: proper names in DS-TTR

(1a) DS IF ?Ty(e)
THEN put(Ty(e))

put(Fo(john′))
ELSE abort

Gregoromichelaki, Eleni CLASP 02/12/20 49/60

application: proper names in DS-TTR

(1a) DS IF ?Ty(e)
THEN put(Ty(e))

put(Fo(john′))
ELSE abort

(1b) DS-TTR IF ?Ty(e)
THEN put(Ty(e))

put(Fo(
[

x : john
]

))
ELSE abort

Gregoromichelaki, Eleni CLASP 02/12/20 49/60

proper names in TTR

Cooper (2018, in prep)

Gregoromichelaki, Eleni CLASP 02/12/20 50/60

proper names in TTR

Cooper (2018, in prep)

λx : Ind . LexPropName (“Eleni”, x)

Gregoromichelaki, Eleni CLASP 02/12/20 50/60

proper names in TTR

Cooper (2018, in prep)

λx : Ind . LexPropName (“Eleni”, x)





sp-event : “Eleni”
cont = x : Ind
e: named(x, “Eleni”)

















sp-event=e : “Eleni”

cont=









bg=

[

x:Ind
e:named(x, “Eleni”)

]

fg=λr :

[

x:Ind
e:named(x, “Eleni”)

]

. r.x









:

[

bg:RecType
fg :(bg→ Ind)

]













Gregoromichelaki, Eleni CLASP 02/12/20 50/60

proper names in DS-TTR+

conservative version with indexed fields

Gregoromichelaki, Eleni CLASP 02/12/20 51/60

proper names in DS-TTR+

conservative version with indexed fields

fields are ordered pairs of (reserved) labels {f1, f2, ..., fn} and
judgments

Gregoromichelaki, Eleni CLASP 02/12/20 51/60

proper names in DS-TTR+

conservative version with indexed fields

fields are ordered pairs of (reserved) labels {f1, f2, ..., fn} and
judgments

〈f1, 〈label : Type〉〉

record types are sets of fields

Gregoromichelaki, Eleni CLASP 02/12/20 51/60

proper names in DS-TTR+

conservative version with indexed fields

fields are ordered pairs of (reserved) labels {f1, f2, ..., fn} and
judgments

〈f1, 〈label : Type〉〉

record types are sets of fields

lexical entry for proper name:

IF ?Ty(e) ∧ 〈doH(hear)〉“Eleni”
THEN ?〈doS&H(make-go)〉(〈f1〉)); put(?ABS&H(

[

x:Ind
]

)),
?〈doS&H(make-go)〉(〈f2〉); put?ABS&H(

[

s1:(named(x, “Eleni”)
]

))
?〈doS&H(make-go)〉; put?ABS&H(

[

s2:(acquainted(speaker, hearer, x)
]

))
?〈doS&H(make-go)〉(〈f2〉); put?ABS&H(

[

s1:(named(x, “Eleni”)
]

))
?〈doS&H(make-go)〉; put?(

[

s3:(scared(Pipkin, x)
]

))
?〈doPipkin(run)〉⊤ ∧ [doPipkin(avoid-Eleni)]⊥
. . .

ELSE abort

Gregoromichelaki, Eleni CLASP 02/12/20 51/60

conclusion

- holistic view of grammar as guiding (production) or characterising
(comprehension) behaviours

via distributed knowledge of sensorimotor contingencies [Noë (2004)]

without necessarily building internal models of the world

Gregoromichelaki, Eleni CLASP 02/12/20 52/60

conclusion

- holistic view of grammar as guiding (production) or characterising
(comprehension) behaviours

via distributed knowledge of sensorimotor contingencies [Noë (2004)]

without necessarily building internal models of the world

- incremental and predictive architecture and integration of multimodal
action/perception within a single formal model [Eshghi et al. (2017a);

Eshghi and Lemon (2014)]

Gregoromichelaki, Eleni CLASP 02/12/20 52/60

conclusion

- holistic view of grammar as guiding (production) or characterising
(comprehension) behaviours

via distributed knowledge of sensorimotor contingencies [Noë (2004)]

without necessarily building internal models of the world

- incremental and predictive architecture and integration of multimodal
action/perception within a single formal model [Eshghi et al. (2017a);

Eshghi and Lemon (2014)]

- grounded symbolic representations as distributively emergent during
interactions from basic action/interaction substratum

- alternative semantic background: Vector Space models conceived as
exemplar theories of conceptualisation [Sadrzadeh et al. (2018); Gregoromichelaki et al. (2019a)]

- grammar as coordination constraints on (joint/collective) action:

Gregoromichelaki, Eleni CLASP 02/12/20 52/60

conclusion

- holistic view of grammar as guiding (production) or characterising
(comprehension) behaviours

via distributed knowledge of sensorimotor contingencies [Noë (2004)]

without necessarily building internal models of the world

- incremental and predictive architecture and integration of multimodal
action/perception within a single formal model [Eshghi et al. (2017a);

Eshghi and Lemon (2014)]

- grounded symbolic representations as distributively emergent during
interactions from basic action/interaction substratum

- alternative semantic background: Vector Space models conceived as
exemplar theories of conceptualisation [Sadrzadeh et al. (2018); Gregoromichelaki et al. (2019a)]

- grammar as coordination constraints on (joint/collective) action:
- necessitates viewing natural language as a type of value-driven “skill”
(know-how)

Gregoromichelaki, Eleni CLASP 02/12/20 52/60

conclusion

- holistic view of grammar as guiding (production) or characterising
(comprehension) behaviours

via distributed knowledge of sensorimotor contingencies [Noë (2004)]

without necessarily building internal models of the world

- incremental and predictive architecture and integration of multimodal
action/perception within a single formal model [Eshghi et al. (2017a);

Eshghi and Lemon (2014)]

- grounded symbolic representations as distributively emergent during
interactions from basic action/interaction substratum

- alternative semantic background: Vector Space models conceived as
exemplar theories of conceptualisation [Sadrzadeh et al. (2018); Gregoromichelaki et al. (2019a)]

- grammar as coordination constraints on (joint/collective) action:
- necessitates viewing natural language as a type of value-driven “skill”
(know-how)

a skill to act jointly effecting changes in the sociomaterial world
(including others’ and own cognition)

Gregoromichelaki, Eleni CLASP 02/12/20 52/60

conclusion

- holistic view of grammar as guiding (production) or characterising
(comprehension) behaviours

via distributed knowledge of sensorimotor contingencies [Noë (2004)]

without necessarily building internal models of the world

- incremental and predictive architecture and integration of multimodal
action/perception within a single formal model [Eshghi et al. (2017a);

Eshghi and Lemon (2014)]

- grounded symbolic representations as distributively emergent during
interactions from basic action/interaction substratum

- alternative semantic background: Vector Space models conceived as
exemplar theories of conceptualisation [Sadrzadeh et al. (2018); Gregoromichelaki et al. (2019a)]

- grammar as coordination constraints on (joint/collective) action:
- necessitates viewing natural language as a type of value-driven “skill”
(know-how)

a skill to act jointly effecting changes in the sociomaterial world
(including others’ and own cognition)
social rationality underpinned by performative commitments and
entitlements rather than individual inference

Gregoromichelaki, Eleni CLASP 02/12/20 52/60

conclusion

- holistic view of grammar as guiding (production) or characterising
(comprehension) behaviours

via distributed knowledge of sensorimotor contingencies [Noë (2004)]

without necessarily building internal models of the world

- incremental and predictive architecture and integration of multimodal
action/perception within a single formal model [Eshghi et al. (2017a);

Eshghi and Lemon (2014)]

- grounded symbolic representations as distributively emergent during
interactions from basic action/interaction substratum

- alternative semantic background: Vector Space models conceived as
exemplar theories of conceptualisation [Sadrzadeh et al. (2018); Gregoromichelaki et al. (2019a)]

- grammar as coordination constraints on (joint/collective) action:
- necessitates viewing natural language as a type of value-driven “skill”
(know-how)

a skill to act jointly effecting changes in the sociomaterial world
(including others’ and own cognition)
social rationality underpinned by performative commitments and
entitlements rather than individual inference

Gregoromichelaki, Eleni CLASP 02/12/20 52/60

Thank you for your attention!

Gregoromichelaki, Eleni CLASP 02/12/20 53/60

Outline

1 DS-TTR

2 Zoom into trees and treenodes

3 DS-TTR+

4 Appendix

Gregoromichelaki, Eleni CLASP 02/12/20 54/60

References I

Alexandru Baltag and Sonja Smets. The dynamic turn in quantum logic.
Synthese, 186(3):753–773, 2012.

Yoshua Bengio. The Consciousness Prior. arXiv:1709.08568 [cs, stat],
December 2019.

Mark H Bickhard. The interactivist model. Synthese, 166(3):547–591, 2009.

Patrick Blackburn. Representation, reasoning, and relational structures: a
hybrid logic manifesto. Logic Journal of the IGPL, 8(3):339–365, 2000.

Herbert H. Clark. Using Language. Cambridge University Press, 1996.

Robin Cooper. Type theory and semantics in flux. In Ruth Kempson, Nicholas
Asher, and Tim Fernando, editors, Handbook of the Philosophy of Science,
volume 14: Philosophy of Linguistics, pages 271–323. North Holland, 2012.

Robin Cooper and Jonathan Ginzburg. Type theory with records for natural
language semantics. The Handbook of Contemporary Semantic Theory,
pages 375–407, 2015.

Arash Eshghi and Oliver Lemon. How domain-general can we be? Learning
incremental dialogue systems without dialogue acts. In Proceedings of
Semdial 2014 (DialWatt), 2014.

Gregoromichelaki, Eleni CLASP 02/12/20 55/60

References II

Arash Eshghi, Julian Hough, and Matthew Purver. Incremental grammar
induction from child-directed dialogue utterances. In Proceedings of the 4th
Annual Workshop on Cognitive Modeling and Computational Linguistics
(CMCL), pages 94–103, Sofia, Bulgaria, August 2013. Association for
Computational Linguistics.

Arash Eshghi, Igor Shalyminov, and Oliver Lemon. Bootstrapping incremental
dialogue systems from minimal data: the generalisation power of dialogue
grammars? In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2017a.

Arash Eshghi, Igor Shalyminov, and Oliver Lemon. Interactional Dynamics and
the Emergence of Language Games. In Proceedings of ESSLLI 2017, 2017b.

Finger, Marcelo and Gabbay, Dov. Adding a temporal dimension to a logic
system. Journal of Logic, Language and Information, 1(3):203–233, 1992.

Eleni Gregoromichelaki. Quotation in dialogue. In The Semantics and
Pragmatics of Quotation, pages 195–255. Springer, 2018.

Gregoromichelaki, Eleni CLASP 02/12/20 56/60

References III

Eleni Gregoromichelaki, Christine Howes, Arash Eshghi, Ruth Kempson,
Mehrnoosh Sadrzadeh, Julian Hough, and Matthew Purver Gijs Wijnholds.
Normativity, meaning plasticity, and the significance of vector space
semantics. In Proceedings of the 23rd Workshop on the Semantics and
Pragmatics of Dialogue., 2019a.

Eleni Gregoromichelaki, Christine Howes, and Ruth Kempson. Actionism in
syntax and semantics. In Gothenburg Proceedings of Conference on
Dialogue and Perception. CLASP, 2019b.

Julian Hough. Modelling Incremental Self-Repair Processing in Dialogue. PhD
thesis, Queen Mary University of London, 2015.

Dimitrios Kalatzis, Arash Eshghi, and Oliver Lemon. Bootstrapping
incremental dialogue systems: Using linguistic knowledge to learn from
minimal data. In Proceedings of the NIPS 2016 Workshop on Learning
Methods for Dialogue, Barcelona, 2016.

Laura Kallmeyer and Rainer Osswald. Syntax-driven semantic frame
composition in lexicalized tree adjoining grammars. Journal of Language
Modelling, 1, 2013.

Gregoromichelaki, Eleni CLASP 02/12/20 57/60

References IV

Laura Kallmeyer, Rainer Osswald, and Sylvain Pogodalla. Progression and
Iteration in Event Semantics—An LTAG Analysis Using Hybrid Logic and
Frame Semantics. In The 11th Syntax and Semantics Conference in Paris
(CSSP 2015), Paris, France, October 2015.

Ruth Kempson, Wilfried Meyer-Viol, and Dov Gabbay. Dynamic Syntax: The
Flow of Language Understanding. Wiley-Blackwell, 2001.

Alva Noë. Action in Perception. MIT press, 2004.

Matthew Purver, Eleni Gregoromichelaki, Wilfried Meyer-Viol, and Ronnie
Cann. Splitting the ‘I’s and crossing the ‘You’s: Context, speech acts and
grammar. In P. Lupkowski and M. Purver, editors, Aspects of Semantics and
Pragmatics of Dialogue. SemDial 2010, 14th Workshop on the Semantics
and Pragmatics of Dialogue, pages 43–50, Poznań, June 2010. Polish
Society for Cognitive Science.

Matthew Purver, Arash Eshghi, and Julian Hough. Incremental semantic
construction in a dialogue system. In J. Bos and S. Pulman, editors,
Proceedings of the 9th International Conference on Computational
Semantics, pages 365–369, Oxford, UK, January 2011.

Gregoromichelaki, Eleni CLASP 02/12/20 58/60

References V

Matthew Purver, Mehrnoosh Sadrzadeh, Ruth Kempson, Gijs Wijnholds, and
Julian Hough. Incremental composition in Distributional Semantics. Journal
of Logic, Language and Information, forthcoming.

Erik Rietveld, Damiaan Denys, and Maarten Van Westen. Ecological-Enactive
Cognition as Engaging with a Field of Relevant Affordances. In The Oxford
Handbook of 4E Cognition, page 41. Oxford University Press, 2018.

Mehrnoosh Sadrzadeh, Matthew Purver, Julian Hough, and Ruth Kempson.
Exploring semantic incrementality with dynamic syntax and vector space
semantics. In Proceedings of the 22nd Workshop on the Semantics and
Pragmatics of Dialogue (SemDial 2018 - AixDial), Aix-en-Provence, 2018.

Krister Segerberg. Getting started: Beginnings in the logic of action. Studia
logica, 51(3-4):347–378, 1992.

Robert Stalnaker. Context and Content. Oxford University Press, 1999.

Yanchao Yu, Arash Eshghi, and Oliver Lemon. Learning how to learn: an
adaptive dialogue agent for incrementally learning visually grounded word
meanings. pages 10–19. doi: 10.18653/v1/W17-⊂2802. URL
http://arxiv.org/abs/1709.10423.

Gregoromichelaki, Eleni CLASP 02/12/20 59/60

http://arxiv.org/abs/1709.10423

References VI

Yanchao Yu, Arash Eshghi, and Oliver Lemon. Comparing attribute classifiers
for interactive language grounding. In Proceedings of the Fourth Workshop
on Vision and Language, pages 60–69, 2015.

Yanchao Yu, Arash Eshghi, and Oliver Lemon. Incremental Generation of
Visually Grounded Language in Situated Dialogue. In Proceedings of INLG
2016, Los Angeles, 2016.

Yanchao Yu, Arash Eshghi, and Oliver Lemon. Learning how to learn: An
adaptive dialogue agent for incrementally learning visually grounded word
meanings. arXiv:1709.10423 [cs], pages 10–19, 2017. doi:
10.18653/v1/W17-⊂2802.

Gregoromichelaki, Eleni CLASP 02/12/20 60/60

	DS-TTR
	Zoom into trees and treenodes
	DS-TTR+
	Appendix
	References

